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Osmolality is a predictor for model-based real
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Abstract

BACKGROUND: The bottleneck for real time control and real time release is lack of product-specific in-line sensors or fast at-line
methods suitable for model-based prediction of process outcome. The most common sensors for protein purification are UV
absorbance values measured at 280 and 260 nm. They have very high selectivity for proteins which contain aromatic amino
acids. The 260 nm signal is more selective for nucleic acids. This work addresses the question if osmolality can be used as an
additional predictor for protein purification.

RESULTS: An antibody intermediate purification step in flow-through mode was evaluated. The flow-through fractions were
collected and then subjected to analysis for antibody concentration and osmolality. UV280, UV260, UV214, pH and conductivity
have been measured on-line by the chromatography workstation. Different combinations of on-line sensor signals and
osmolality have been used to find out if molality is a valuable predictor. The root mean square error was used for assessing the
quality of the model-based prediction of quantity with partial least squares in this chromatography process. Predictors UV280,
UV260, UV214, pH and conductivity showed equal root mean square error (0.274) as UV280, UV260, UV214, pH, conductivity and
osmolality (0.274). Lowest mean square error (0.244) was found with UV280, UV260 and osmolality as predictors of quantity.

CONCLUSION: Osmolality as an at-line method is an excellent predictor together with UV280 and UV260 for protein quantity in
model-based prediction using partial least squares methodology.
© 2019 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of
Chemical Industry.

Keywords: predictor; osmolality; freezing point depression; antibody; purification; partial least squares

INTRODUCTION
Real time monitoring and real time release of protein purification
are encouraged by health authorities. Guidelines of the European
Health Agency and the US Food and Drug Administration have
been in place for several years.1 ‘Real time release testing’ is the
ability to evaluate and ensure the quality of in-process and/or final
product based on process data. Typically, it includes a valid combi-
nation of measured material attributes and process controls. The
rules are outlined in the guidelines of the International Conference
of Harmonization (ICH Q8 (R2)).2 Real time release testing improves
product quality and consistency.3,4 The bottleneck for real time
control and real time release is the lack of product-specific in-line
sensors or fast at-line methods. In this work, we want to check
if osmolality is a valuable predictor for protein purification. One
possibility to circumvent the lack of a product-specific sensor is
the application of statistical modeling, often referred to as soft
sensors.5 On-line and off-line measurements in a process are
correlated by statistical models, and the desired properties such
as product concentration are then predicted. This requires the
training of the model, usually done by several process runs. This
has been demonstrated for purification of model proteins 6–8

or real process samples such as antibodies from culture super-
natant by protein A affinity chromatography9,10 or basic fibroblast
growth factor by cation exchange chromatography.11 The most
common sensors for protein purification are UV absorbance val-
ues measured at 280 and 260 nm. They have very high selectivity
for proteins which contain aromatic amino acids. The 260 nm
signal is more selective for nucleic acids.12 pH and conductivity
are not able to directly measure protein concentration in protein
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chromatography, but with change of salt and/or pH, proteins are
eluted from the column. They are indirect predictors.

We raised the question as to whether osmolality could be an
additional predictor for protein purification. The osmolality of a
solution denotes the concentration of osmotically active particles
in that solution.13 Osmolality is defined as the concentration of
all solutes in a given mass of water and is expressed as units of
either osmolality (milliosmoles of solute per kilogram of water,
mOsm kg−1 H2O) or osmolarity (milliosmoles of solute per liter of
water, mOsm L−1 H2O):

Osmolality = 𝜙nC = osmol∕kg H2O (1)

where 𝜙 is the osmotic coefficient, which accounts for the degree
of molecular dissociation, n is the number of particles into which
a particle can dissociate and C is the molal concentration of the
solution. Osmolality is a function only of the number of particles
and is not related to the particles’ molecular mass, size, shape or
charge. One mole of a non-dissociating substance (e.g. glucose
or urea) dissolved in 1 kg of water decreases the freezing point of
the resultant solution by 1.86 ∘C. Such a solution has an osmolality
of 1 Osm kg−1 or 1000 mOsm kg−1. The presence of solutes in an
aqueous solution changes the colligative properties: increase of
boiling point, decrease of freezing protein, increase of osmotic
pressure and decrease of vapor pressure. Osmolality is conve-
niently measured by freezing point osmometry, vapor pressure
osmometry or membrane osmometry. We have applied freezing
point technology because it is the industry-expected osmolality
test method (EP 2.2.35: Osmolality) and offers fast test times as
well as accuracy and precision.

Our goal was to enable the prediction of product concentration
in real time. We only used a small set of predictors that are typically
recorded in a time grid of 1 s by the chromatography workstation,
i.e. three UV signals (UV280, UV260 and UV214), pH and conduc-
tivity, together with osmolality. As previously shown,9 partial least
squares (PLS) regression models are able to predict the quantity
and purity of an antibody capture step. In order to evaluate if
osmolality is a useful predictor for protein concentration, several
PLS prediction models with and without osmolality were gener-
ated. As we currently only had eight antibody purification runs
available where osmolality was measured, the prediction models
were optimized using leave-one-run-out cross-validation. Seven
runs were used as a training set and then the models were applied
to the eighth run. The performance of the different prediction
models was compared using the root mean square error of predic-
tion (RMSE). The RMSE is given in the unit of the variable of interest
and measures the average deviation between measured and pre-
dicted protein concentration for all fractions. When designing a
dataset for the prediction of protein concentration, it is important
to find a tradeoff between the size and the number of the fractions
used. The fractions should be large enough to be able to perform
all necessary analytical analysis and small enough to capture the
shape of the elution. In addition, the measurement error of the
analytical analysis has to be considered.

In this work, we used a flow-through chromatography step to
determine if osmolality could be an additional predictor for pro-
tein concentration. We have set up a flow-through intermediate
step for antibody purification as a model process using a mixed
mode anion exchanger. The eluate from protein A affinity chro-
matography is diluted and adjusted to pH 8.75 and loaded in the
mixed mode ion exchanger. The flow-through fractions are col-
lected and then subjected to analysis for antibody concentration

and osmolality. UV280, UV260, UV214, pH and conductivity have
been measured on-line by the chromatography workstation. Dif-
ferent combinations of on-line sensor signals and osmolality have
been used to find out by statistical modeling if osmolality is a valu-
able predictor.

EXPERIMENTAL
Chromatographic workstation
The chromatographic workstation consisted of an ÄKTA Pure 25
system (GE Healthcare, Uppsala, Sweden) equipped with two
system pumps, sample pump S9 and fraction collector F9-C. It also
contained the standard UV monitor U9-M for triple-wavelength
detection as well as the conductivity probe C9 and the pH probe
V9-pH. The system was controlled by the software Unicorn Version
6.4. UV absorption at 280, 260 and 214 nm was recorded using a
flow cell with an optical path length of 2 mm.

Antibody and capture step
A monoclonal antibody against tumor necrosis factor alpha was
produced in CHO K1 cell culture. The antibody was captured from
the supernatant via protein A affinity chromatography using an
antibody Select SuRe column (GE Healthcare) with glycine/HCl (pH
3.5) as elution buffer. The fractions were neutralized by adding
1/20 fraction volume of 0.5 mol L−1 sodium phosphate (pH 8.0) and
pooled. The pool was aliquoted, then the 5 mL aliquots were frozen
and stored at −20 ∘C until further use. The antibody concentration
of the aliquoted antibody pool was 12.1 mg mL−1.

Antibody intermediate purification using TOYOPEARL
NH2-750F mixed mode resin
TOYOPEARL NH2-750F (Tosoh Bioscience, Griesheim, Germany) is
a salt-tolerant anion exchanger resin; however, as the ligand is
a polyamine chain, it is considered to have mixed mode inter-
actions. The resin was packed into a Tricorn column with 5 mm
inner diameter to a total volume of 1 mL. The intermediate step
was operated in flow-through mode, retaining host cell proteins
and high-molecular-weight impurities. Tris/HCl (10 mmol L−1, pH
8.75) was used as equilibration buffer, 10 mmol L−1 Tris/HCl con-
taining 1 mol L−1 NaCl (pH 8.75) served as regeneration buffer and
0.1 mol L−1 NaOH was used for sanitization of the column.

On the day of usage, the 5 mL antibody capture eluate was
thawed and diluted 1:5 with equilibration buffer. The pH was
adjusted to 8.75 by adding few drops of 10 mol L−1 NaOH.
The load was filtered using a syringe filter with 0.2 μm pore
size prior to loading onto the column. After the 1:5 dilution
with equilibration buffer, the load had an antibody concen-
tration of approximately 2.4 mg mL−1. During sample loading,
1.2 mL flow-through fractions were collected. The flow rate
was 100 cm h−1.

Osmolality measurement
The osmolality of each flow-through fraction was measured using
an OsmoTECH® Single-Sample Micro-Osmometer (Advanced
Instruments, Norwood, MA, USA). The technique of measurement
was based on the determination of freezing point depression.
For the measurement, 20 μL of the sample was aspirated and
the sampler was inserted directly into the instrument. Sam-
ples were run in duplicate and osmolality values were recorded
and analyzed.
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Figure 1. (A) Theoretical protein elution profile (black), corresponding fraction-wise averages (red) for nf = 10 fractions and actual measured responses
(blue). (B) Noisy simulated spectra (given for two time points) serve as predictors (a.u. is arbitrary units).

Figure 2. (A) Modeling error as a function of number of fractions per run (nf) for values of coefficient of variation (cv) representing accuracy of analytical
method. (B) Pseudo-3D contour plot with prediction error as a function of both nr and nf.

Statistical model
The eight identical repetitions of the antibody intermediate
process were used to set up a statistical prediction model. The
on-line data used were recorded in a time grid of 1 s by the chro-
matography workstation, i.e. three UV signals (UV280, UV260 and
UV214), pH and conductivity. The on-line data were stored in the
database of the custom programmed control software XAMIris
(Evon, Austria). The data were read into the statistical computing
environment R where all statistical analyses were performed. First,
quality and consistency checks of the data were performed by
visual inspection together with descriptive statistics. For model
building, the time intervals of the on-line data were reduced by
averaging across the time grid of the off-line analytics (antibody
content, aggregates and monomers) and at-line measurement of
osmolality. In addition, the time delay by the void volumes of the
pH and conductivity sensor was considered.

PLS regression is a well-established modeling technique in
chemometrics. PLS transforms the original predictor variables into

a set of latent variables, which are also linear functions of the
original predictors. These latent variables are then used as pre-
dictors in a multiple linear regression model for the response y.
Linear combinations are determined such that a maximum covari-
ance between the scores (the values of the latent variables) and
the response is achieved. The number of components (latent vari-
ables) is an optimization parameter and was determined within
the framework of a leave-one-run-out cross-validation – i.e. one
of the eight runs is held out and predicted by a model fit on
the remaining seven runs. This procedure is repeated until each
run has served as a test run once. The output of this algo-
rithm is the optimized model parameter and a prediction error
estimate. The RMSE was calculated according to the following
equation:

RMSE =

[
1
k

k∑
j=1

(yi − ŷi)2

]1∕2

(2)
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where k is the number of observations, yi represents the measured
values and ŷi represents the predicted values.

For PLS, scaling is indispensable as all the different variables were
measured on different scales and units. In this study, autoscaling
was performed, where each variable x was transformed individu-
ally by subtraction of the mean of x and division by the empirical
standard deviation.

RESULTS AND DISCUSSION
The development of a statistical model for prediction of a process
parameter from on-line and at-line analysis requires training runs.
This means that a process is repeated several times and the on-line,
at-line and off-line analysis is performed. With this dataset then,
a statistical model for prediction of a process parameter is estab-
lished. In this case, a flow-through chromatography purification of
an antibody was performed with an ÄKTA chromatography work-
station. This workstation was equipped with UV sensors (280, 260
and 214 nm), a conductivity monitor and a pH probe. At-line, the
osmolality was measured. The off-line analytics were antibody con-
tent, aggregates and monomers.

First we determined the optimal number of fractions for the
off-line analysis, because the flow-through is divided into frac-
tions. Therefore a theoretical assessment was done by assuming
decreasing accuracy expressed as coefficient of variation (cv) of
our off-line methods. We use cv as fraction of one and not %.

For the training of the statistical model, it is also important
to select the appropriate number of runs. The more precise the
off-line methods are, the better the quality of prediction will be.
All analytical methods perform with a certain precision. Therefore
a compromise must be found between the number of runs, the
number of collected fractions and the expected quality of pre-
diction expressed as RMSE. More training runs will improve the
quality of prediction for a given precision of an analytical method.
A compromise must be made in order to keep the number of
experiments to a reasonable number. A cv of 0.03 would represent
a method with high precision, such as high-performance liquid
chromatography (HPLC),14,15 and a cv of 0.15 would represent a
method such as enzyme-linked immunosorbent assay (ELISA).

Statistical modeling requires data – predictors xi (usually
p-vectors with entries being the UV intensities, pH, conduc-
tivity or osmolality) and corresponding measurements of the
response yi (e.g. the protein quantity) for a set of k observations
originating from nr chromatographic runs forming the so-called
training set. In the present case, the predictors are available at a
high frequency of typically a few seconds, whereas the protein
quantity can only be determined fraction-wise (i.e. in a cumulative
manner). An obvious solution to this problem is the averaging of
the on-line signals over the time interval of the off-line fraction to
obtain the required matching (xi , yi) data pairs. Natural questions
in this context are the number of runs, nr, and the number of
fractions per run, nf, to be performed to achieve a low prediction
error at an acceptable workload in the laboratory and determined
by the product k = nrnf. In a simulation experiment, we assume
a Gaussian profile of the protein quantity (the ‘true’ values) as
shown in Fig. 1A, the corresponding means (red), which would be
determined in the laboratory in the absence of any experimental
error, and the actually measured values (blue). The latter are
simulated for a given cv assuming an unbiased analytical method
(i.e. its long-run average is identical to the true value). Similarly,
noisy artificial and unimodal spectra are simulated on a 5 s time

Figure 3. (A) Antibody concentration in eight training runs. 1A2–1B8 are
the collected fractions. (B) Osmolality of different fractions.

grid (Fig. 1B) with a linear relationship between the peak height
and the protein quantity.

PLS models are built on a training set given by nr runs, nf frac-
tions per run and a measurement error given by an assumed
cv, optimized for the number of PLS components by 10-fold
cross-validation, and the final model applied on a (large and sim-
ulated) test set. As both the absolute values of the response and
the noise level in the predictor spectra are arbitrary, any achieved
results are only relative. Figure 2A depicts the test error (RMSE)
as a function of the number of fractions for different values of
cv and a fixed number of runs. As expected, the modeling error
decreases with nf and is generally lower for more accurate analyt-
ical methods. As a first conclusion, a flattening of all profiles for nf

larger than 10–20 can be seen, with the exact value depending
on cv. Secondly, Fig. 2B shows that lines with a constant model-
ing error have an approximate hyperbolic shape of the form nfnr

= constant. The practical implication of this finding is as follows.
One might start modeling with a dataset obtained for a certain
value of nf and observe the resulting RMSE. If this seems too high,
performing more runs (i.e. increasing nr) will improve the model
performance.

With approximately eight training runs and about 18 fractions,
we are already in a good range of quality of prediction. Once we
had done this theoretical assessment, we performed the train-
ing runs. With the eight training runs, we measured the antibody
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Figure 4. On-line UV signals, pH signal and conductivity profile for eight training runs.

concentration in the collected fractions by analytical affinity chro-
matography (Fig. 3A). The training runs should have the same
accuracy as later on the runs for production.

The roll-up in the third and fourth fractions is explained by
displacement of the antibody monomers by antibody multimers
which bind stronger than the monomers or by the pH transition
which is generated upon elution. Fractions were also analyzed for
osmolality (Fig. 3B). These measurements were treated as at-line
measurements. Unfortunately, osmolality is not currently available
as an on-line sensor, therefore the test must be processed at-line
in order to be able to assess if osmolality is a predictor for protein
concentration in flow-through chromatography.

On-line signals UV280, UV260, UV214, pH and conductivity are
shown in Fig. 4. The signal traces reflect the day-to-day variation of
an antibody intermediate purification and are therefore well suited
for model building.

With these training runs, the statistical model was established
to predict quantity for this purification process. Prediction models
were generated with various combinations of predictors. The
number of latent variables was optimized using leave-one-run-out
cross-validation. In the six presented models, the cross-validated
results, i.e. for the prediction of one single run the data of the
seven remaining runs, were used for the training of the model. The
predicted and measured data were superimposed.

The quantity can be predicted with good accuracy by the
predictors UV280, UV260, UV214, pH and conductivity (Fig. 5,
PM1). RMSE is given in units of quantity (mg mL−1), and here it
is less than 10% of the maximum antibody concentration. Addi-
tion of osmolality to the predictors did not improve the quality
of prediction. The same RSME was obtained (Fig. 5, PM2). The
combination of UV280, UV260 and osmolality (Fig. 5, PM3) or
UV280, UV260, UV214 and osmolality (Fig. 5, PM4) improved the
quality of prediction. It is obvious that osmolality alone failed to
predict quantity (Fig. 5, PM5). However, it is slightly better than
conductivity alone (Fig. 5, PM6). UV is also a good predictor for
quantity, because it captures the aromatic amino acids of proteins
and the SH groups. It is often overlooked that the SH groups
also contribute to UV absorbance. UV and pH increase at the
beginning of the flow-through. Overshoot/roll-up is very common

in flow-through chromatography, because two different protein
species compete with each other, resulting in the weaker binding
species being displaced by the stronger one. When the protein
is applied to the equilibrated ion exchanger, salt and hydroxide
ions are displaced by the protein which is weakly bound. This
leads to an increase in pH and a slight increase in conductivity.
The pH monitor is slow compared with UV. This explains why the
combinations of UV280, UV260 and osmolality (Fig. 5, PM3) and
UV280, UV260, UV214 and osmolality (Fig. 5, PM4) are slightly
better predictors. The slow pH response will predict a later onset
of protein elution and a broader roll-up. Furthermore, we worked
with weak buffers that were not fully dissociated. A slight change
in pH has a dramatic effect on dissociation. The protein itself acts
as a buffer. These effects are captured by osmolality. Although the
effect of osmolality is well documented for cell culture, it has been
neglected in protein chromatography. Currently, osmometers are
batch instruments, and on-line sensors are not yet available. On
the other hand, an at-line measurement may contribute to better
process understanding, because nowadays measurements with
modern osmometers are not very time-consuming and only a few
microliters are necessary for a precise measurement. The method
captures all solutes in a chromatography process solution, the
ions dissociated and non-dissociated, proteins and non-ionic
solutes such as sugars and polyols. pH captures only hydronium
and hydroxide ions, and conductivity only charged ions.

CONCLUSION
Osmolality as an at-line method is an excellent predictor together
with UV280 and UV260 for protein quantity in model-based pre-
diction using PLS methodology. At the current stage, it can be
used as an at-line method because the instrument gives a very
fast response. Osmolality is independent of temperature because
it measures osmolytes based on mass, whereas pH and conductiv-
ity are highly dependent on temperature. All these considerations
explain why osmolality is a slightly better predictor together with
UV compared with UV, pH and conductivity.
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Figure 5. Prediction of antibody quantity by various predictor sets.
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